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SUMMARY The dual representation for mulli-gluon
matriz elements is waed to study the soft and collinear
limits of multi-parton scatlering. We propose an am-
plitude to exactly desernbe one set of helicity ampli-
tudes for two quark - n gluon scatiering.

A new technique was recently proposed to calculate tree-level
multi-gluon amplitudes [1,2]. The basic idea is to represent the
matrix element for a gluon scattering process in a SU{N) Yang-
Mills theory in the following fashion:

S tr(Ada.. ) A(1,2,..,m).
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We will call the functions A(1,2,...,n) sub-amplitudes. The ma-
trices A, represent the SU(N) algebra in the fundamental repre-
sentation, and the sum is taken over all the (n — 1}! non-cyclic
permutations of the indices 1,2,...,n. We will normalise the A
matrices so that [A., As] = iy/2faicAc and tr(A.ds) = 6as. The
sub-amplitudes satisfy many important properties, as pointed out
in [1,2):

e A(1,2,...,n) is invariant under cyclic permutations of

{1,2,...,n).

e A(L,2,...,n)=(-1)"A(n,n—1,...,1)}.

e A(1,2,...,n) is gauge invariant, and satisfies the following
identity: Z:' A(1,2,3,...,n) = 0, where the sum is over the
n — 1 cyclic permutations of (2,3,...,n).

¢ Incoherence to leading order in N:

3T IMal? = NN 1) Y {143, 0)?

colors perm’
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These properties suggest that the sub-amplitudes might be much

easier to calculate than the full amplitude, and that the resulting

expressions will be remarkably simple. That this is in fact the
case was shown in [1,3] through the calculation of the 4,5 and 6
gluon matrix elements.

In {1] the representation (1) was chasen because of its connec-
tion with the dual models, or, more precisely, because of the iden-
tification of the sero-slope limit of the SU(N) open string with
the SU(N) Yang-Mills theory. This analogy suggested that the
sub-amplitudes (which in this language should then more prop-
erly be referred to as dual amplitudes) satisfy a further property
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in addition to those described above. Namely, the factorisation
on the m-particle poles (p1 +ps+ - - + pm = P):

. .
A(1,2,...,n) P=F0 A(1,2,...,m, - P) 1—,‘; A(P,m +1,...,n).

(3)
This factorization is a consequence of the genersl properties of
gtring theories, and is expected to hold for m > 3. When m = 2,
equation (3) is not well defined. In fact the amplitude for three on-
shell gluons vanishes, and the amplitude among off-shell states is
not well defined in string theory as it is forrmulated today. Then it
is not clear what A{1,2, —P) skould be if P? 3 0. Furthermore,
no particular factorization is expected a priori when one of the
gluons becomes soft. In spite of this, in reference [1] we showed
explicitly for the 4,5 and 6 gluon amplitudes that the factorisation
holds not only for the three-gluon poles, but also for the two-
gluon poles as well as for the soft gluon emission. In addition,
by properly regularising the Koba-Nielsen representation of the
amplitude when some of the gluons are off-shell it is possible to
explicitly prove that this factorisation of the soft and collinear
singularities holda for any n [4]:

A(1,2,...,n) 'S E(n,1,2)4(2,3,...,n), (4)
A(L,2,...,n) ¥ z:%V(l,:,—P)—};;A(P,&...,n)(s)

hel

E(n,1,2) is the square root of the eikonal factor: E(n,1%,2) =
gv2({n2}/{n1){12}). The superscript + represents the helicity of
the glucn, while the symbol (i5} is defined in [3,1,2] and satisfies
[{(53]* = #ij. For a soft gluon with negative helicity the ver-
tex is obiained by taking the complex conjugate of E(n,1%,2).
V{1,2, P) is the off-ahell three-gluon vertex as derived from the
Feynman rules (up to the color factor), and the sum in (5) refers
to the two physical helicities of the intermediate gluon. When the
ghuons 1 and 2 become collinear V' reduces to:

- o= p-y_ —3V3g{12) + g~ pty_ —#V2g5?(12)
V(l_,z ,Pr)———m, v{(1t,2”,P"} ———-————m{s)

The gluon polarisation vectors have been chosen following the
prescription developed by Xu etf.al. in {3]. s is the momentum
fraction of gluon 1: py = 2P, pa = (1 — #)P. The gluons 1
and 2 are incoming; while the gluon with momentum P is outgo-
ing. The vertex V for the other possible helicity configurations
can be obtained By complex conjugation and permutations of (6).
Equations (4),(5) are very important, because they allow one to
approximate multi-gluon amplitudes when some of the gluons are
either soft or collinear. The exact knowledge of the six-gluon am-
plitude altows for instance a very good approximation of the 7- or
8-gluon matrix element when one or two gluons are soft compared
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to the others. Furthermore, by iterating equation {4) and squar-
ing the resulting amplitude one easily recovers the well known
expression {5,6]:

S Al ~ NN D

(ool , hel) porm’
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The advantage of this approach is the possibility to calculate the
subleading terms in equation (7). In ref.[7] it was noticed that
equation {7), multiplied by a proper weight, actually accounts
for more than 90% of the cross section for the six-gluon process
in at least 80% of the generated events. In the same paper the
conjecture was made that equation (7) represents an even better
approximation to the n-gluon cross section for n > 6. Iterat-
ing equation (5) we get an approximated amplitude that after
squaring has the same structure as equation (7), but also con-
tains the gluon-fusion functions {8] corresponding to the collinear
emissions. We believe that the inclusion of these contributions
(paying proper attention to not double counting some regions of
phase space!) may further improve the estimnates presented in {7,
without increasing the complexity of the numerical calculation.
As a further example of the power of the representation in
terms of dual amplitudes, let us derive the matrix element for the
collinear emission of a quark-antiquark pair. Let us first substi-
tute equation (5) into equation (1). It is easy to obtain:

Aoy ur(x.a,...a,.)f.,,V(x.z,p)}_;?A(P,a,...,n).

a permM
(8)
Now the sum runs over a = 1,...,N? — 1 and over all the
permutations of (3,4,...,n). To extract the amplitude for two

collinear quarke and n — 2 gluons it is now sufficient to sub-
stitute the three-gluon vertex fo13:V (1,2, P) with a ¢Jg vertex
A328(1)7.0(2)e*(P)/+/2. In this way we obtain the following ex-
pression for the amplitude:

Azg,(n-2) N (Jts...A..).‘,'{-(fz—')_A(P*,a,...,n)
+’—%§fl AP=3,...,m)}. ©)

Once again the sum is over all the permutations of (3,4,...,n)
and we have assumed that the quark has positive helicity and mo-
mentum fraction x. If all of the emitted gluons but one, say gluon
3, have the same helicity, say positive, then only the contribution
proportional to A(P~,37,...,n"} will survive. If we then use
the exact expression for the matrix element A(P~,37,...,n), it
is possible to absorb the & factor and to get an expression that
makes sense even when the quarke are not collinear:

A(q+, ﬁ—:ﬂ_, 9'+| ‘e ;9+] =

3 ' 1

s 3 el Ty 0O
p1 and p; are the momenta of g and §, respectively, and ¢ and 5 are
their colors. At this stage the identity expressed by equation (10)
is just a guess, justified by the fact that by construction it satis-
fies the required factorization properties for the emission of a soft
gluon and collinear pairs. For n = 4,5, though, this amplitude
gives rise to the exact result [5]. For n = 6 the agreement with
the exact result {10} is numerical. We speculate that it will be

‘=3+.tl +---+ 'tn +0(N—:}.

exact even for n > 8. For n > 8, though, it does not describe the
full process (3q, (n — 2)g), because different helicity configurations
are present. It might well be, nevertheless, that the contribution
from this helicity configuration will dominate the full (2¢, {n—3)g)
cross section, in the same way in which the Parke and Taylor ex-
pression for (97,97, 9%, ...), equation (7), dominates the n-ghuon
process, In this way very fast numerical programs might describe
with good accuracy the dominant processes responsible for multi-
jet phenomena [11]. To the leading order in N, the square of (10)
summed over the colors and over the relevant helicity configura-
tions is:

33 1aGq,(n - 2)g)* = aNTTHN - 1)

hal sol
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The sum on the right hand side is over all the permutations of
(3,...,n) and no average factor has been introduced.
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